Telegram Group & Telegram Channel
Forwarded from Machinelearning
✔️ Книга+практика : Understanding Deep Learning

Книга “Understanding Deep Learning” посвящена идеям и принципам, лежащим в основе глубокого обучения. Подача материала построена таким образом, чтобы читатель мог понять материал настолько эффективно, насколько это возможно. Для читателей, желающих углубиться в изучение, в каждой главе приведены соответствующие задачи, записные книжки по Python и подробные справочные материалы.

В первой части книги представлены модели глубокого обучения и обсуждается, как их обучать, измерять их производительность и улучшать эту производительность.

В следующей части рассматриваются архитектуры, которые специализируются на изображениях, тексте и графических данных. Для свободного понимания этих двух глав требуется понимать принципы линейной алгебры, матанализа и теории вероятностей.

Последующие части книги посвящены генеративным моделям и методике обучения с подкреплением. Эти главы требуют больших знаний в области теории вероятностей и математического анализа.

В последней главе обсуждается этика искусственного интеллекта и призыв к практикующим инженерам задуматься о моральных последствиях своей работы.

Автор книги: Simon J. D. Prince - почетный профессор информатики в Университете Bath (Великобритания) , со-автор более 80 опубликованных исследований в области ML.
Научный сотрудник, специализирующийся на искусственном интеллекте и глубоком обучении, он руководил группами ресерча в Anthropics Technologies Ltd, Borealis AI и других компаниях.

Дополнительно, на отдельном сайте книги, читателям доступны:

🟢ответы на наиболее частые вопросы студентов;
🟢ipynb - ноутбуки для практических занятий по материалам книги;
🟢интерактивные иллюстрации по темам;
🟢презентации по каждой главе для преподавателей, которые захотят построить свое обучение на содержимом книги;
🟢большой список статей по 12 направлениям для продолжения обучения после прочтения книги: AI Theory, Transformers & LLMs, Unsupervised learning, Natural language processing, Computer vision и др.

▶️Дата последней актуализации книги : 28 августа 2024 года.


📌Стоимость: бесплатно


🟡Сайт книги
🖥Github


@ai_machinelearning_big_data

#AI #ML #Book
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/golang_books/766
Create:
Last Update:

✔️ Книга+практика : Understanding Deep Learning

Книга “Understanding Deep Learning” посвящена идеям и принципам, лежащим в основе глубокого обучения. Подача материала построена таким образом, чтобы читатель мог понять материал настолько эффективно, насколько это возможно. Для читателей, желающих углубиться в изучение, в каждой главе приведены соответствующие задачи, записные книжки по Python и подробные справочные материалы.

В первой части книги представлены модели глубокого обучения и обсуждается, как их обучать, измерять их производительность и улучшать эту производительность.

В следующей части рассматриваются архитектуры, которые специализируются на изображениях, тексте и графических данных. Для свободного понимания этих двух глав требуется понимать принципы линейной алгебры, матанализа и теории вероятностей.

Последующие части книги посвящены генеративным моделям и методике обучения с подкреплением. Эти главы требуют больших знаний в области теории вероятностей и математического анализа.

В последней главе обсуждается этика искусственного интеллекта и призыв к практикующим инженерам задуматься о моральных последствиях своей работы.

Автор книги: Simon J. D. Prince - почетный профессор информатики в Университете Bath (Великобритания) , со-автор более 80 опубликованных исследований в области ML.
Научный сотрудник, специализирующийся на искусственном интеллекте и глубоком обучении, он руководил группами ресерча в Anthropics Technologies Ltd, Borealis AI и других компаниях.

Дополнительно, на отдельном сайте книги, читателям доступны:

🟢ответы на наиболее частые вопросы студентов;
🟢ipynb - ноутбуки для практических занятий по материалам книги;
🟢интерактивные иллюстрации по темам;
🟢презентации по каждой главе для преподавателей, которые захотят построить свое обучение на содержимом книги;
🟢большой список статей по 12 направлениям для продолжения обучения после прочтения книги: AI Theory, Transformers & LLMs, Unsupervised learning, Natural language processing, Computer vision и др.

▶️Дата последней актуализации книги : 28 августа 2024 года.


📌Стоимость: бесплатно


🟡Сайт книги
🖥Github


@ai_machinelearning_big_data

#AI #ML #Book

BY Golang Books






Share with your friend now:
tg-me.com/golang_books/766

View MORE
Open in Telegram


Golang Books Telegram | DID YOU KNOW?

Date: |

Why Telegram?

Telegram has no known backdoors and, even though it is come in for criticism for using proprietary encryption methods instead of open-source ones, those have yet to be compromised. While no messaging app can guarantee a 100% impermeable defense against determined attackers, Telegram is vulnerabilities are few and either theoretical or based on spoof files fooling users into actively enabling an attack.

How to Buy Bitcoin?

Most people buy Bitcoin via exchanges, such as Coinbase. Exchanges allow you to buy, sell and hold cryptocurrency, and setting up an account is similar to opening a brokerage account—you’ll need to verify your identity and provide some kind of funding source, such as a bank account or debit card. Major exchanges include Coinbase, Kraken, and Gemini. You can also buy Bitcoin at a broker like Robinhood. Regardless of where you buy your Bitcoin, you’ll need a digital wallet in which to store it. This might be what’s called a hot wallet or a cold wallet. A hot wallet (also called an online wallet) is stored by an exchange or a provider in the cloud. Providers of online wallets include Exodus, Electrum and Mycelium. A cold wallet (or mobile wallet) is an offline device used to store Bitcoin and is not connected to the Internet. Some mobile wallet options include Trezor and Ledger.

Golang Books from br


Telegram Golang Books
FROM USA